U.S Energy Secretary Steven Chu this week announced the largest ever awards of the Department’s supercomputing time to 57 innovative research projects–using computer simulations to perform virtual experiments that in most cases would be impossible or impractical in the natural world.
Utilizing two world-leading supercomputers with a computational capacity roughly equal to 135,000 quad-core laptops, the research could, for example, help speed the development of more efficient solar cells, improvements in biofuel production, or more effective medications to help slow the progression of Parkinson’s disease.
"The Department of Energy’s supercomputers provide an enormous competitive advantage for the United States," said Secretary Chu. "This is a great example of how investments in innovation can help lead the way to new industries, new jobs, and new opportunities for America to succeed in the global marketplace."
The projects include both academic and commercial research, including partnerships with companies such as GE (NYSE: GE) and Boeing (NYSE: BA) to use sophisticated computer modeling in the development of better wind turbines and jet engines.
Specifically, the Department is awarding time on two of the world’s fastest and most powerful supercomputers–the Cray XT5 (Jaguar) at Oak Ridge National Laboratory and the IBM Blue Gene/P (Intrepid) at Argonne National Laboratory. Jaguar’s computational capacity is roughly equivalent to 109,000 laptops all working together to solve the same problem. Intrepid is roughly equivalent to 26,000 laptops.
The awards include nearly 1.7 billion processor hours on the Department of Energy’s advanced supercomputers–the largest total ever–reflecting both the growing sophistication of the field of computer modeling and simulation and the rapid expansion of supercomputing capabilities at DOE National Laboratories in recent years.
Awarded under the Department’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, many of the new and continuing INCITE projects aim to further renewable energy solutions and understand of the environmental impacts of energy use. The program, open to all scientists, is supported by the Department’s Office of Science and managed by the DOE Leadership Computing Facilities at the Department’s Argonne and Oak Ridge National Laboratories.
INCITE program goals include:
- Illuminating the roles of ocean, atmosphere, land, and ice in climate change
- Advancing materials for lithium air batteries, solar cells, and superconductors
- Understanding how turbulence affects the efficiency of aircraft and other transportation systems
- Designing next-generation nuclear reactors and fuels and extending the life of aging reactors
- Developing fusion energy systems
- Improving combustion in fuel-efficient, near-zero-emissions systems
- Exploring carbon sequestration
Below are a few of the selected research programs. A full list is available here.
Understanding the Ultimate Battery Chemistry: Rechargeable Lithium/Air
Principal Investigator: Jack Wells, Oak Ridge National Laboratory
Utilizing both the Jaguar and Intrepid supercomputers, the research consortium will study and demonstrate a working prototype of a rechargeable Lithium/Air battery. The Lithium/Air battery can potentially store ten times the energy of a Lithium/Ion battery of the same weight. Realizing this enormous potential is a very challenging scientific problem. If successful, this will enable rechargeable batteries that compete directly with gasoline, making fully electric vehicles practical and widespread.
Hydrogen as Alternative Fuel – Simulation
Principal Investigator: John Bell, Lawrence Berkeley National Laboratory
Hydrogen is a clean fuel that, when consumed, emits only water and oxygen making it a potentially promising part of our clean energy future. Researchers will use the Jaguar supercomputer to better understand how hydrogen and hydrogen compounds could be used as a practical fuel for producing power and heat.
Modeling Nuclear Reactors for Electrical Power
Principal Investigator: Thomas Evans, Oak Ridge National Laboratory
Utilizing the power of the Jaguar supercomputer, the research team will study the power distribution in a boiling water reactor, a type of nuclear reactor used for the generation of electrical power. By using novel computational tools researchers will focus on improving performance of both current and next-generation reactors potentially saving millions of dollars, through increased power efficiency and a reduction in fuel failures.
In Related News…
Google Inc unveiled technology on Thursday it says will help build trust between rich and poor countries on projects designed to protect the world’s tropical forests.
Read Reuters coverage at the link below.