Tomorrow’s fuel-cell vehicles may be powered by enzymes that consume cellulose from woodchips or grass and exhale hydrogen.
Researchers at Virginia Tech, Oak Ridge National Laboratory (ORNL), and the University of Georgia have produced hydrogen gas pure enough to power a fuel cell by mixing 14 enzymes, one coenzyme, cellulosic materials from nonfood sources, and water heated to about 90 degrees (32 C).
The group announced three advances from their "one pot" process: 1) a novel combination of enzymes, 2) an increased hydrogen generation rate–to as fast as natural hydrogen fermentation, and 3) a chemical energy output greater than the chemical energy stored in sugars–the highest hydrogen yield reported from cellulosic materials. "
In addition to converting the chemical energy from the sugar, the process also converts the low-temperature thermal energy into high-quality hydrogen energy–like Prometheus stealing fire," said Percival Zhang, assistant professor of biological systems engineering in the College of Agriculture and Life Sciences at Virginia Tech.
"It is exciting because using cellulose instead of starch expands the renewable resource for producing hydrogen to include biomass," said Jonathan Mielenz, leader of the Bioconversion Science and Technology Group at ORNL.
The researchers used cellulosic materials isolated from wood chips, but crop waste or switchgrass could also be used. "If a small fraction–2% or 3%–of yearly biomass production were used for sugar-to-hydrogen fuel cells for transportation, we could reach transportation fuel independence," Zhang said.
He added that the 3% figure is for global transportation needs. The U.S. would actually need to convert about 10% of biomass, which would be 1.3 billion tons of usable biomass.